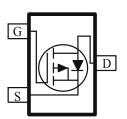

AM2319P


These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are voltage control small signal switch, power management in portable and battery-powered products such as computer portable electronics and other battery power application.

•	Low $r_{DS(on)}$ Provides Higher Efficiency and
	Extends Battery Life

- Fast Switch
- Low Gate Charge
- Miniature SOT-23 Surface Mount Package Saves Board Space

PRODUCT SUMMARY			
$V_{DS}(V)$	$\mathbf{r}_{\mathrm{DS(on)}}\left(\Omega\right)$	$I_{D}(A)$	
-30	$0.20 @ V_{GS} = -10 V$	-2.1	
-30	$0.30 @ V_{GS} = -4.5V$	-1.7	

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter			Maximum	Units	
Drain-Source Voltage			-30	V	
Gate-Source Voltage			±20	V	
C . D . C . d	$T_A=25^{\circ}C$] T_	-2.1		
Continuous Drain Current ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1D	-1.7	A	
Pulsed Drain Current ^b		I_{DM}	±10		
Continuous Source Current (Diode Conduction) ^a		I_S	-0.4	A	
D a	$T_A=25^{\circ}C$	D	1.25	W	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	LD	0.8	VV	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
M . I	t <= 5 sec	R _{THJA}	250	°C/W		
Maximum Junction-to-Ambient ^a	Steady-State		285			

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

AM2319P

Danamatan	Cb a l	Tank Canalikian	Limits			TT24	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static							
Zaro Cota Voltaga Drain Current	Idss	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1		
Zero Gate Voltage Drain Current	1088	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-10	μΑ	
Gate-Body Leakage	Igss	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA	
Gate-Threshold Voltage	V _{GS(th)}	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = -250 {\rm uA}$	-1.30			V	
On-State Drain Current ^A	I _{D(on)}	$V_{\rm DS}$ = -5 V, $V_{\rm GS}$ = -4.5 V	-3			A	
D : G	fDS(on)	$V_{GS} = -10 \text{ V}, I_D = -2.1 \text{ A}$			0.20	Ω	
Drain-Source On-Resistance ^A		$V_{GS} = -4.5 \text{ V}, I_D = -1.7 \text{ A}$			0.30		
Forward Tranconductance ^A	gs	$V_{DS} = -5 \text{ V}, I_D = -2.1 \text{ A}$		2		S	
Diode Forward Voltage	Vsd	$I_S = -0.4 \text{ A}, V_{GS} = 0 \text{ V}$		-0.70	-1.2	V	
Dynamic ^b							
Total Gate Charge	Qg	$V_{DS} = -10 \text{ V}, V_{GS} = -5 \text{ V},$		3.4			
Gate-Source Charge	Qgs	VDS = -10 V, VGS = -3 V, $ID = -2.1 A$		0.8		nC	
Gate-Drain Charge	Q_{gd}	ID – -2.1 A		1.5			
Turn-On Delay Time	t _{d(on)}			8			
Rise Time	$t_{\rm r}$	$V_{DS} = -10 \text{ V}, I_D = -1.1 \text{ A},$		18		ns	
Turn-Off Delay Time	t _{d(off)}	$R_G = 50 \Omega$, $V_{GEN} = -10 V$		52		115	
Fall-Time	t_{f}			39			

Notes

- a. Pulse test: $PW \le 300us duty cycle \le 2\%$.
- b. Guaranteed by design, not subject to production testing.